Skip to content

test_worst_bytecode_single_opcode()

Documentation for tests/benchmark/test_worst_bytecode.py::test_worst_bytecode_single_opcode@0f7c73a7.

Generate fixtures for these test cases for Prague with:

fill -v tests/benchmark/test_worst_bytecode.py::test_worst_bytecode_single_opcode --fork Prague

Test a block execution where a single opcode execution maxes out the gas limit, and the opcodes access a huge amount of contract code.

We first use a single block to deploy a factory contract that will be used to deploy a large number of contracts.

This is done to avoid having a big pre-allocation size for the test.

The test is performed in the last block of the test, and the entire block gas limit is consumed by repeated opcode executions.

Source code in tests/benchmark/test_worst_bytecode.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
@pytest.mark.parametrize(
    "opcode",
    [
        Op.EXTCODESIZE,
        Op.EXTCODEHASH,
        Op.CALL,
        Op.CALLCODE,
        Op.DELEGATECALL,
        Op.STATICCALL,
        Op.EXTCODECOPY,
    ],
)
@pytest.mark.slow()
@pytest.mark.valid_from("Cancun")
def test_worst_bytecode_single_opcode(
    blockchain_test: BlockchainTestFiller,
    pre: Alloc,
    fork: Fork,
    opcode: Op,
):
    """
    Test a block execution where a single opcode execution maxes out the gas limit,
    and the opcodes access a huge amount of contract code.

    We first use a single block to deploy a factory contract that will be used to deploy
    a large number of contracts.

    This is done to avoid having a big pre-allocation size for the test.

    The test is performed in the last block of the test, and the entire block gas limit is
    consumed by repeated opcode executions.
    """
    # The attack gas limit is the gas limit which the target tx will use
    # The test will scale the block gas limit to setup the contracts accordingly to be
    # able to pay for the contract deposit. This has to take into account the 200 gas per byte,
    # but also the quadratic memory expansion costs which have to be paid each time the
    # memory is being setup
    attack_gas_limit = Environment().gas_limit
    max_contract_size = fork.max_code_size()

    gas_costs = fork.gas_costs()

    # Calculate the absolute minimum gas costs to deploy the contract
    # This does not take into account setting up the actual memory (using KECCAK256 and XOR)
    # so the actual costs of deploying the contract is higher
    memory_expansion_gas_calculator = fork.memory_expansion_gas_calculator()
    memory_gas_minimum = memory_expansion_gas_calculator(new_bytes=len(bytes(max_contract_size)))
    code_deposit_gas_minimum = (
        fork.gas_costs().G_CODE_DEPOSIT_BYTE * max_contract_size + memory_gas_minimum
    )

    intrinsic_gas_cost_calc = fork.transaction_intrinsic_cost_calculator()
    # Calculate the loop cost of the attacker to query one address
    loop_cost = (
        gas_costs.G_KECCAK_256  # KECCAK static cost
        + math.ceil(85 / 32) * gas_costs.G_KECCAK_256_WORD  # KECCAK dynamic cost for CREATE2
        + gas_costs.G_VERY_LOW * 3  # ~MSTOREs+ADDs
        + gas_costs.G_COLD_ACCOUNT_ACCESS  # Opcode cost
        + 30  # ~Gluing opcodes
    )
    # Calculate the number of contracts to be targeted
    num_contracts = (
        # Base available gas = GAS_LIMIT - intrinsic - (out of loop MSTOREs)
        attack_gas_limit - intrinsic_gas_cost_calc() - gas_costs.G_VERY_LOW * 4
    ) // loop_cost

    # Set the block gas limit to a relative high value to ensure the code deposit tx
    # fits in the block (there is enough gas available in the block to execute this)
    env = Environment(gas_limit=code_deposit_gas_minimum * 2 * num_contracts)

    # The initcode will take its address as a starting point to the input to the keccak
    # hash function.
    # It will reuse the output of the hash function in a loop to create a large amount of
    # seemingly random code, until it reaches the maximum contract size.
    initcode = (
        Op.MSTORE(0, Op.ADDRESS)
        + While(
            body=(
                Op.SHA3(Op.SUB(Op.MSIZE, 32), 32)
                # Use a xor table to avoid having to call the "expensive" sha3 opcode as much
                + sum(
                    (Op.PUSH32[xor_value] + Op.XOR + Op.DUP1 + Op.MSIZE + Op.MSTORE)
                    for xor_value in XOR_TABLE
                )
                + Op.POP
            ),
            condition=Op.LT(Op.MSIZE, max_contract_size),
        )
        # Despite the whole contract has random bytecode, we make the first opcode be a STOP
        # so CALL-like attacks return as soon as possible, while EXTCODE(HASH|SIZE) work as
        # intended.
        + Op.MSTORE8(0, 0x00)
        + Op.RETURN(0, max_contract_size)
    )
    initcode_address = pre.deploy_contract(code=initcode)

    # The factory contract will simply use the initcode that is already deployed,
    # and create a new contract and return its address if successful.
    factory_code = (
        Op.EXTCODECOPY(
            address=initcode_address,
            dest_offset=0,
            offset=0,
            size=Op.EXTCODESIZE(initcode_address),
        )
        + Op.MSTORE(
            0,
            Op.CREATE2(
                value=0,
                offset=0,
                size=Op.EXTCODESIZE(initcode_address),
                salt=Op.SLOAD(0),
            ),
        )
        + Op.SSTORE(0, Op.ADD(Op.SLOAD(0), 1))
        + Op.RETURN(0, 32)
    )
    factory_address = pre.deploy_contract(code=factory_code)

    # The factory caller will call the factory contract N times, creating N new contracts.
    # Calldata should contain the N value.
    factory_caller_code = Op.CALLDATALOAD(0) + While(
        body=Op.POP(Op.CALL(address=factory_address)),
        condition=Op.PUSH1(1) + Op.SWAP1 + Op.SUB + Op.DUP1 + Op.ISZERO + Op.ISZERO,
    )
    factory_caller_address = pre.deploy_contract(code=factory_caller_code)

    contracts_deployment_tx = Transaction(
        to=factory_caller_address,
        gas_limit=env.gas_limit,
        gas_price=10**6,
        data=Hash(num_contracts),
        sender=pre.fund_eoa(),
    )

    post = {}
    deployed_contract_addresses = []
    for i in range(num_contracts):
        deployed_contract_address = compute_create2_address(
            address=factory_address,
            salt=i,
            initcode=initcode,
        )
        post[deployed_contract_address] = Account(nonce=1)
        deployed_contract_addresses.append(deployed_contract_address)

    attack_call = Bytecode()
    if opcode == Op.EXTCODECOPY:
        attack_call = Op.EXTCODECOPY(address=Op.SHA3(32 - 20 - 1, 85), dest_offset=85, size=1000)
    else:
        # For the rest of the opcodes, we can use the same generic attack call
        # since all only minimally need the `address` of the target.
        attack_call = Op.POP(opcode(address=Op.SHA3(32 - 20 - 1, 85)))
    attack_code = (
        # Setup memory for later CREATE2 address generation loop.
        # 0xFF+[Address(20bytes)]+[seed(32bytes)]+[initcode keccak(32bytes)]
        Op.MSTORE(0, factory_address)
        + Op.MSTORE8(32 - 20 - 1, 0xFF)
        + Op.MSTORE(32, 0)
        + Op.MSTORE(64, initcode.keccak256())
        # Main loop
        + While(
            body=attack_call + Op.MSTORE(32, Op.ADD(Op.MLOAD(32), 1)),
        )
    )

    if len(attack_code) > max_contract_size:
        # TODO: A workaround could be to split the opcode code into multiple contracts
        # and call them in sequence.
        raise ValueError(
            f"Code size {len(attack_code)} exceeds maximum code size {max_contract_size}"
        )
    opcode_address = pre.deploy_contract(code=attack_code)
    opcode_tx = Transaction(
        to=opcode_address,
        gas_limit=attack_gas_limit,
        gas_price=10**9,
        sender=pre.fund_eoa(),
    )

    blockchain_test(
        genesis_environment=env,
        pre=pre,
        post=post,
        blocks=[
            Block(txs=[contracts_deployment_tx]),
            Block(txs=[opcode_tx]),
        ],
        exclude_full_post_state_in_output=True,
    )

Parametrized Test Cases

The interactive table below is also available as a standalone page.

Test ID (Abbreviated) opcode
...fork_Cancun-blockchain_test-opcode_EXTCODESIZE EXTCODESIZE
...fork_Cancun-blockchain_test-opcode_EXTCODEHASH EXTCODEHASH
...fork_Cancun-blockchain_test-opcode_CALL CALL
...fork_Cancun-blockchain_test-opcode_CALLCODE CALLCODE
...fork_Cancun-blockchain_test-opcode_DELEGATECALL DELEGATECALL
...fork_Cancun-blockchain_test-opcode_STATICCALL STATICCALL
...fork_Cancun-blockchain_test-opcode_EXTCODECOPY EXTCODECOPY
...fork_Prague-blockchain_test-opcode_EXTCODESIZE EXTCODESIZE
...fork_Prague-blockchain_test-opcode_EXTCODEHASH EXTCODEHASH
...fork_Prague-blockchain_test-opcode_CALL CALL
...fork_Prague-blockchain_test-opcode_CALLCODE CALLCODE
...fork_Prague-blockchain_test-opcode_DELEGATECALL DELEGATECALL
...fork_Prague-blockchain_test-opcode_STATICCALL STATICCALL
...fork_Prague-blockchain_test-opcode_EXTCODECOPY EXTCODECOPY
...fork_Osaka-blockchain_test-opcode_EXTCODESIZE EXTCODESIZE
...fork_Osaka-blockchain_test-opcode_EXTCODEHASH EXTCODEHASH
...fork_Osaka-blockchain_test-opcode_CALL CALL
...fork_Osaka-blockchain_test-opcode_CALLCODE CALLCODE
...fork_Osaka-blockchain_test-opcode_DELEGATECALL DELEGATECALL
...fork_Osaka-blockchain_test-opcode_STATICCALL STATICCALL
...fork_Osaka-blockchain_test-opcode_EXTCODECOPY EXTCODECOPY